Appendix - Definition of Limit

Informal:
L is the limit of $f(x)$ as x approaches c
if and only if
you can make $f(x)$ stay as close as you like to L
just by keeping x close enough to c,
(but not equal to c).

More formal, verbal:
L is the limit of $f(x)$ as x approaches c
if and only if
- for any positive number epsilon, no matter how small,
- there is a positive number delta, such that
- if x is kept within delta units of c,
 but not equal to c,
- then $f(x)$ stays within epsilon units of L.

Formal, more symbols:
$L = \lim_{{x \to c}} f(x)$
if and only if
- for any number $\varepsilon > 0$, no matter how small,
- there is a number $\delta > 0$ such that
- if x is kept within δ units of c, but $x \neq c$,
- then $f(x)$ stays within ε units of L.